Subscribe to the Teradata Blog

Get the latest industry news, technology trends, and data science insights each week.



I consent that Teradata Corporation, as provider of this website, may occasionally send me Teradata Marketing Communications emails with information regarding products, data analytics, and event and webinar invitations. I understand that I may unsubscribe at any time by following the unsubscribe link at the bottom of any email I receive.

Your privacy is important. Your personal information will be collected, stored, and processed in accordance with the Teradata Global Privacy Policy.

The Secret to Big Data Analytics Success Comes Down to One Word

The Secret to Big Data Analytics Success Comes Down to One Word

Those of you who follow me know I am always evangelizing on the “Sentient Enterprise” capability maturity model for analytics that I co-developed with the Kellogg School of Management’s Dr. Mohanbir Sawhney. I tell anyone who will listen how one word – agility – is key to getting an enterprise to the “sentient” point where it can analyze data and make autonomous decisions at massive scale in real-time.

A company must take many steps on the journey to sentience, but most have to do with agility. The word is even embedded in the first of the Sentient Enterprise’s five stages – building the Agile Data Platform – proof of how front-and-center agility needs to be for anyone looking to survive and compete in today’s data-driven world.

big-data-analytics-one-word.jpg

Webster’s dictionary defines agility as “marked by ready ability to move with quick easy grace” or “having a quick resourceful and adaptable character.” In the corporate world, “business agility” is usually defined as a company’s ability to rapidly respond and adjust to change or adapt goods and services to meet customer demands. I’d suggest, however, that we also entertain a more basic definition, one that can help us identify and borrow lessons from agility in many different business settings.

Agility is the ability to “decompose” or break big problems or systems into smaller ones, so they’re easier to solve and collaborate around.


That’s the gist behind a comparison I often make between tomorrow’s data architectures and the Open Systems Interconnection (OSI) model that the telecommunications industry developed in the 1970’s to segment complicated infrastructure (wiring; relay circuits; software, etc.) into manageable chunks for better collaboration among various specialists (the Sentient Enterprise’s Layered Data Architecture is the way we do this with data). I like this example because, even though OSI was developed four decades ago, the technique of segmenting big systems (or data sets) into overlapping but distinct and manageable elements is a timeless ingredient for agility – one that we continue to see in some cutting edge settings today.

Check out a company called Docker to see what I mean. Docker lets you break down the app building process into a series of manageable steps. Through a simple “Docker Engine” and cloud-based “Docker Hub,” the company lets you assemble apps from modular components in a way that can reduce delays and friction between development, QA and production environments. By breaking things down into smaller components, Docker claims the app-building process becomes more manageable and reliable, allowing IT to build and ship faster, and run the same app – unchanged – on laptops, data center VMs and in the cloud.

Another example is the entire “microservices” approach to building software architectures. Unlike more traditional service-oriented architectures (SOAs) that integrate various business applications together, microservice architectures involve complex applications built from small, independent processes. These processes communicate with each other freely using application programming interfaces (APIs) that are language agnostic. You’re still building powerful architectures, but it happens more efficiently with modular elements broken down to focus on discreet small tasks. As a result, microservices architectures can be tremendously agile. They facilitate continuous-delivery software development and let you easily update or improve services organized around distinct capabilities like user interfacing, logistics, billing and other tasks.

As decomposition becomes part of a trend towards increased agility, it is however also import to call out the need for even more governance — governance that is put into the platform as a foundational element and not an afterthought. In fact, it sometime needs to be hidden from the individual developer. Combining the likes of DevOps principles and capabilities with microservices architecture are extremely crucial to the success of such strategies.

These examples show how we are moving away from monolithic applications and approaches that can be unwieldy and anything but agile. This is the same line of thinking when I talk about agile access to data in the Sentient Enterprise: You have to structure the agility with the right kind of governance, so you don’t create more problems than you’re solving. I’ve talked about the wild, wild west pitfalls of data anarchy and error. Even advocates of microservices caution against potential problems with things like network latency, load balancing and fault tolerance. Tackling new problems, however, is a small price to pay for the agility you can unlock by breaking things down in manageable, often profitable, ways.


Portrait of Oliver Ratzesberger

(Author):
Oliver Ratzesberger

Mr. Ratzesberger has a proven track record in executive management, as well as 20+ years of experience in analytics, large data processing and software engineering.

Oliver’s journey started with Teradata as a customer, driving innovation on its scalable technology base. His vision of how the technology could be applied to solve complex business problems led to him joining the company. At Teradata, he has been the architect of the strategy and roadmap, aimed at transformation. Under Oliver’s leadership, the company has challenged itself to become a cloud enabled, subscription business with a new flagship product. Teradata’s integrated analytical platform is the fastest growing product in its history, achieving record adoption.

During Oliver’s tenure at Teradata he has held the roles of Chief Operating Officer and Chief Product Officer, overseeing various business units, including go-to-market, product, services and marketing. Prior to Teradata, Oliver worked for both Fortune 500 and early-stage companies, holding positions of increasing responsibility in technology and software development, including leading the expansion of analytics during the early days of eBay.

A pragmatic visionary, Oliver frequently speaks and writes about leveraging data and analytics to improve business outcomes. His book with co-author Professor Mohanbir Sawhney, “The Sentient Enterprise: The Evolution of Decision Making,” was published in 2017 and was named to the Wall Street Journal Best Seller List. Oliver’s vision of the Sentient Enterprise is recognized by customers, analysts and partners as a leading model for bringing agility and analytic power to enterprises operating in a digital world.

Oliver is a graduate of Harvard Business School’s Advanced Management Program and earned his engineering degree in Electronics and Telecommunications from HTL Steyr in Austria.

He lives in San Diego with his wife and two daughters. View all posts by Oliver Ratzesberger

Turn your complex data and analytics into answers with Teradata Vantage.

Contact us